
Bayesians Too Should Follow
Wason: A Comprehensive Accuracy-
Based Analysis of the Selection Task

Filippo Vindrola and Vincenzo Crupi

Wason’s selection task is a paramount experimental problem in the study of human reasoning,
often connected with the celebrated ravens paradox in the philosophical literature. Various nor-
mative accounts of the selection task rely on a Bayesian approach. Some claim vindication of
participants’ rationality. Others don’t, thus following Wason’s original intuition that observed
responses are mistaken. In this article we argue that despite claims to the contrary, all these ac-
counts actually speak to the same effect: Wason was right. First, we provide a new accuracy-
based analysis of the selection task that includes the existing proposals as special cases. We
then show on this basis that none can actually vindicate participants’ rationality. We conclude
that all normative renditions considered eventually concur: all in all, Bayesians should follow
Wason in the selection task.

1. Introduction

No experimental paradigm has generated more psychological research on rationality

than theWason selection task (Wason [1966], [1968]). Content withWason’s original

interpretation, many psychologists and philosophers have thought of the selection task

as a textbook example of how humans can systematically fall short of compelling

norms of reasoning. Others have protested, however, providing a number of argu-

ments to the effect that people’s behaviour in the task is actually rational, given alter-

native and allegedly appropriate normative accounts.1 The result: more than fifty years

after Wason’s original experiment, we are left with a plurality of different normative

analyses of the task. Most of them are explicitly Bayesian; all are implicitly based on

various auxiliary assumptions and theoretical choices. Some claim vindication of par-

ticipants’ rationality, others don’t, and no consensus is in sight.
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In this article we argue that and explain why, despite prevailing views, all these

accounts actually speak to the same effect: Wason’s original intuition was correct.

First, we provide a novel accuracy-based framework for the selection task that in-

cludes the existing proposals (including Wason’s) as special cases. We then show

on this basis that none of these proposals can vindicate participants’ rationality in

the task without relying on highly debatable auxiliary assumptions that are quite in-

dependent of the Bayesian framework. We conclude that all normative renditions

considered converge: Bayesians should follow Wason in the selection task.

Here is an outline of the structure of our argument. First, we give a preliminary re-

view of themain accounts that have been proposed to assess participants’ rationality in

the task (sec. 2). Since these proposals reflect different approaches and theoretical

choices, our second step is to make them comparable, providing a unified model of

the task (sec. 3). Third, we present our unified normative framework based on the

notion of the minimization of epistemic inaccuracy (sec. 4). In the fourth and last step

we discuss the implications (secs 5–7).

We provide three main reasons why our analysis improves on current knowledge.

One is that, in light of our analysis, the existing accounts can be recovered as specifi-

cations of a unified view of rational inquiry as aiming at inaccuracy reduction. A fur-

ther reason is that the resulting framework refines the existing accounts with crucial

amendments and integrations—in particular, it provides additional justificatory grounds

for their conclusions. The third key point of our contribution is the outcome of our

analysis. Despite appearances to the contrary, all normative approaches considered

actually concur: prevalent responses in the selection task are best seen as a systematic

departure from compelling normative benchmarks of rational thinking.

2. The Persistent Puzzle of the Wason Task

First things first: let us review key episodes in the long history of the normative rendi-

tions of the Wason task. The task is as follows2: Participants are presented with four

cards (see fig. 1), and they are told that each card has a letter on one side and a number

on the other. Participants are asked to say which cards they would turn over in order to

find out whether the following conditional statement is true: ‘if a card has a vowel on

one side, then it has an even number on the other side’. In Wason’s original experi-

ments, almost all subjects selected the first card (A), a majority also selected the third

card (2), only a few selected the fourth one (7), and almost no one selected the second

one (K).

Wason considered these results a clear indication of biased reasoning. This is be-

causemost participants tended to select a card that is apparently useless for discovering

the truth or falsity of the conditional statement (the third one), and they failed to select

a card that is equally accessible and useful to that effect (the fourth one). According to

2 We are only concerned with the so-called abstract version of the task here.
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Wason’s original story, turning the first and the fourth card is useful because, logically,

these cards can potentially falsify the hypothesis at issue (by possibly revealing an odd

number and a vowel, respectively, on the other side), whereas the other two cards can-

not provide any refuting evidence for that hypothesis. Rational agents should then se-

lect the first and the last card, while the other two are useless: ‘The correct response is

to choose cards displaying vowels and cards displaying numbers which are not even—

that is, odd numbers—since only this combination of letters and numbers on the same

card would prove the statement false’ (Wason [1966], p. 146). Given this ‘quasi-

Popperian’ analysis, the conclusion seems straightforward: since most participants

selected the third card and did not select the fourth card, they behaved irrationally.

However, when it comes to explaining why this conclusion has normative force, and

more generally how the quasi-Popperian story really works, Wason’s informal remarks

won’t help much (more on this below).

More than twenty years after Wason’s original experiment, Oaksford and Chater

([1994]) did provide a detailed formal story. But their story subverted Wason’s con-

clusions. According to Oaksford and Chater ([2007], p. 31), participants’ performance

actually complies with compelling normative principles—simply, these principles are

not the onesWasonwas relying on: ‘the psychological data [. . .] has appeared to show

human reasoning performance to be hopelessly flawed, [but] when appropriate ratio-

nal theories are applied, reasoning performance may, on the contrary, be rational’.

Oaksford and Chater pointed out that participants in the task were asked for a judge-

ment of epistemic utility: which cards are most useful to turn over in order to discover

whether the conditional statement is correct? And the right way to address a question

like this—they submitted—is to assess to what extent turning each card can be expected

to reduce subjects’ uncertainty about the truth of the conditional statement. According

to Oaksford and Chater, the expected reduction of uncertainty for one card amounts to

the weighted average of the difference between prior and posterior Shannon entropy

for each possible outcome of turning that card. Importantly, Oaksford and Chater’s

analysis implied that such expected uncertainty reduction is higher for choosing the

third rather than the fourth card. If this is correct then, against the traditional view, the

apparently useless selection of the third card is actually more rational than the choice

of the fourth card, and the participants’ behaviour seems to be vindicated.

Sixteen years after Oaksford and Chater’s key contribution we have the last

main episode of our (condensed, yet winding enough) story. Fitelson andHawthorne

([2010]) thoroughly investigated the connections between Wason’s selection task and

Hempel’s paradox of the ravens (but for an important precedent, see Humberstone

Figure 1. Cards used for the Watson selection test.
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[1994]). Unlike Oaksford and Chater, Fitelson and Hawthorne quantify the episte-

mic utility of turning a certain card in the task as given by the ‘expected confirma-

tional power’ of an evidence search option (for example, turning over a specific card),

thereby extending an earlier probabilistic analysis by Nickerson ([1996]) to a more

general assessment. However, while Nickerson’s ([1996], p. 1) analysis had con-

cluded that ‘people’s typical performance in the selection task can be explained by

consideration of what constitutes an effective strategy for seeking evidence’, Fitel-

son and Hawthorne ([2010], p. 235) refrained from reassuring conclusions: ‘it is more

difficult to rationalize the behaviour/performance of actual subjects on the Wason

selection task than one might have thought’.

We thus have three major normative approaches to the Wason selection task. One

(Wason’s original story) ascribed irrationality to the participants, but its justificatory

basis was largely informal and incomplete. Another one (Oaksford and Chater’s) re-

lies on a sophisticated probabilistic machinery and an influential piece of formalism

from information theory to allegedly vindicate participants’ performance as optimal

decision-making. The last one (Nickerson’s and Fitelson and Hawthorne’s) draws

on classical philosophical concerns in confirmation theory, but apparently delivers

diverging implications about human rationality. What these diverse proposals have

in common is that they all had to make a number of theoretical choices and back-

ground assumptions along the way to establish their conclusions. Table 1 provides

a schematic preview, to be further discussed later on.

As table 1 shows, the theoretical disunity in the normative accounts of the task is

quite striking. Are then participants violating compelling normative prescriptions or

not? Without a unified framework, it’s hard to assess the impact that each assump-

tion has on the outcomes of a given normative analysis. This is especially true given

that the parties in play did not always provide explicit independent motivations for

their choices. As a result, it’s largely unclear what determines the relevant conclu-

sions in each case: is it really the application of diverse normative models or rather

some of the auxiliary assumptions made? To answer this question, in what follows

we’ll first provide a unified model of the task (sec. 3) and a unified normative frame-

work (sec. 4), allowing for a unified assessment of the previous accounts mentioned

from a novel perspective (secs 5–7).

3. Modelling the Task

In this section we provide a unified and comprehensive model of the Wason task.

Participants in the task are shown four cards, which we’ll call c1, c2, c3, c4, respec-

tively (from left to right as displayed in fig. 1). Since each card can be turned over to

gain new evidence about the truth of the conditional statement, there are exactly four

elementary options available to assess whether such statement is true, as explicitly

requested in the task. Each elementary search option is represented by the possible
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outcomes of turning the single card at issue. We thus denote these search options

with upper case C’s, and treat them as binary variables, positing C1 5 feven(c1),
∼even(c1)g; C2 5 feven(c2), ∼even(c2)g; C3 5 fvowel(c3), ∼vowel(c3)g; C4 5

fvowel(c4), ∼vowel(c4)g. Combinations of elementary options are search options too,

for example, C1 � C2 5 feven(c1) ∧ even(c2), even(c1) ∧ ∼even(c2), ∼even(c1) ∧
even(c2), ∼even(c1) ∧ ∼even(c2)g, and so on (a combination of n distinct elemen-

tary options is modelled as a variable with 2n values denoting mutually inconsistent

and jointly exhaustive possibilities). Since participants are indeed allowed to turn

multiple cards, the overall set of response options, call it R, includes all elementary

search options and any combination of them (16 options in total). So, for instance:

C1 ∈ R, C1 � C3 ∈ R, and C1 � C2 � C3 � C4 ∈ R.

Wewant a generalized way tomodel the selection task to accommodate a variety of

assumptions made in the literature. We thus have to choose how to best characterize

the epistemic state of a rational agent addressing the task, represented by probability

distributionP. To this aim,we treat the four cards as randomly and independently sam-

pled from a background population (a large deck). Two possible statistical compo-

sitions of the large deck will be considered, and denoted as d and ∼d. As they are as-
sumed to specify the proportions of four kinds of objects (cards with a vowel versus

consonant and an even versus odd number), the content of each of d and ∼d can be

determined by three parameters. We’ll call such parameters a, b, e, and a*, b*,

e*, respectively.

• Parameters a and a* are the probabilities of a card, ci, having a vowel on

one side given d and given ∼d, respectively. So a 5 P½vowel(ci)jd� and
a* 5 P½vowel(ci)j∼d�. We also assume 0 < a, a* < 1.

• Parameters b and b* are the probabilities of a card, ci, having an even num-

ber on one side given d and given ∼d, respectively. So b 5 P½even(ci)jd �
and b* 5 P½even(ci)j∼d�. We also assume 0 < b, b* < 1.

• Parameters e and e* are the probabilities of a card, ci, having a non-even

(odd) number on one side given a vowel on the other side and given d or

given ∼d, respectively. So ε 5 P½∼even(ci) j vowel(ci) ∧ d � and ε* 5

P½∼even(ci) j vowel(ci) ∧ ∼d�. We also assume 0 ≤ ε < 1 and 0 < ε* < 1.

To start making some intuitive sense of this setting, let us first briefly comment on e

and e*. If ε 5 0, then d implies that the universally quantified material conditional

8 x½vowel(x) ⊃ even(x)� is true in the larger deck from which the four cards are

meant to have been drawn. And given ε* > 0, ∼d implies that the same quantified

material conditional is false. In fact, it is useful to take D 5 fd, ∼dg as another

relevant binary variable in our model, because then (for ε 5 0 < ε*) d can represent

‘if a card has a vowel on one side, then it has an even number on the other side’ as

referred to the whole population (the whole deck of cards), and ∼d its plain logical

negation. Following a typical assumption of earlier Bayesian analyses of the Wason
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task, we also posit a flat prior distribution on D, that is, P(d) 5 P(∼d ) 5 0:5. As

a consequence of this and the random independent sampling assumption about

the four cards, a full probability distribution over C1 � C2 � C3 � C4 � D can be de-

termined through our six parameters, as illustrated by table 2 and the appendix (as

in the corresponding models from the literature, probabilistic coherence is enforced

positing a(1 2 ε) ≤ b ≤ 1 2 aε and a*(1 2 ε*) ≤ b* ≤ 1 2 a*ε*).3

As a final piece of formalism, we need to label the conjunction (vowel(c1) ⊃ even
(c1)) ∧ ::: ∧ (vowel(c4) ⊃ even(c4)) or, more concisely, ∧1≤ i≤4½vowel(ci) ⊃ even(ci)�.
This statement, call it f, represents ‘if a card has a vowel on one side, then it has an even

number on the other side’ as referred to the sample (of the four cards available). Of

course, f is a straightforward consequence of d provided that ε 5 0 (intuitively mean-

ing that there are ‘no exceptions’ in the whole deck). Also note that all probabilities

involving f and its negation, thus propositional variable F 5 f f , ∼ f g, are also fully de-
termined by a, a*, b, b*, e, and e* (given the other background assumptions we made).

Let us briefly comment on themotivations for ourmodelling framework. An impor-

tant point for the analysis of the Wason task is: what is the actual epistemic target,

namely, the partition of hypotheses with regards to which the usefulness of the avail-

able information search options should be rationally assessed? If we label such tar-

get as T, the choice is between positing T 5 D or T 5 F. Bayesians have almost

exclusively discussed the former case, while Wason clearly had in mind the second.

Aswewill see, both can be explicitly included (and compared) in our treatment—some-

thing that no earlier analysis pursued, to the best of our knowledge. The choice to

posit T 5 D enables the parallelism between the Wason task and the ravens paradox

(see Humberstone [1994]), a move adopted by Fitelson and Hawthorne ([2010]), with

the additional assumptions that ε 5 0 and ε* > 0, as expressed in our formalism. The

assumption T 5 D is also crucial in (Oaksford and Chater [1994], [2003]), but their

interpretation of d is that the probability of a card ci having an even number on one

side given that it has a vowel on the other side is high, allowing for e to be small

but positive (0 ≤ ε ≤ 0:1). In this vein, Oaksford and Chater have construed their foil

hypothesis, ∼d, as a probabilistic independence claim concerning vowel(ci) and

even(ci), which implies b* 5 1 2 ε* in our framework (check table 2 on the right).

Oaksford and Chater have also found it natural to posit two further indepen-

dence constraints, to wit, P½vowel(ci) j d � 5 P½vowel(ci) j ∼d � and P½even(ci) j d � 5
P½even(ci) j∼d�, so that a 5 a*, and b 5 b* (compare table 2 and Oaksford and

Chater [2003], p. 291). That’s why Oaksford and Chater’s model ends up requir-

ing only three parameters: a, b, and e, in our notation. Nickerson’s ([1996]) model,

3 More precisely, one should say that the probability distribution P over C1 � C2 � C3 � C4 � D arises
by taking the ur-prior distribution determined through table 2, and then conditionalizing on the evidence
that is already given in the experimental scenario through the visible sides of the cards, namely (in our
notation), vowel(c1) ∧ ∼vowel(c2), ∧ even(c3) ∧ ∼even(c4). This elucidation is technically appropriate but
immaterial for our purposes. (See the appendix for two specific examples.) For the probabilistic coher-
ence clauses—a(1 2 ε) ≤ b ≤ 1 2 aε and a*(1 2 ε*) ≤ b* ≤ 1 2 a*ε*—note that given the back-
ground model, these are necessary and sufficient for all cells in table 2 to embed values in [0,1].
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Table 1. A variety of theoretical choices in major normative analysis of Wason’s selection task.

Interpretation of the conditional Performance measure addressed Normative approach adopted

Material Probabilistic
Response
frequencies

Selection
propensities

Quasi-
falsificationism

Expected entropy
reduction

Expected
confirmational power

Wason ✓ ✗ ✓ ✗ ✓ ✗ ✗

Oaksford & Chater ✗ ✓ ✗ ✓ ✗ ✓ ✗

Fitelson & Hawthorne ✓ ✗ ✗ ✓ ✗ ✗ ✓

Table 2. Probability distribution concerning a given card, ci, as determined by the parameters a, a*, b, b*, e, and e*.

given d given ∼d
even(ci) ∼even(ci) even(ci) ∼even(ci)

vowel(ci) a(1 2 e) ae a vowel(ci) a*(1 2 e*) a*e* a*
∼vowel(ci) b 2 a(1 2 e) (1 2 b) 2 ae 1 2 a ∼vowel(ci) b* 2 a*(1 2 e*) (1 2 b*) 2 a*e* 1 2 a*

b 1 2 b b* 1 2 b*



in turn, retains the equalities a 5 a*, and b 5 b* (that Fitelson and Hawthorne

[2010], pp. 220–23, challenge; see also Vranas [2004]), but agrees with Fitelson

and Hawthorne in that (unlike Oaksford and Chater) one has ε 5 0 and ε* is inde-

pendently set (see Nickerson [1996], p. 16).

The integrated representation provided here will be of much help in our later dis-

cussion. But before getting there, we still have to articulate a similar unifying move

concerning the normative foundations of an analysis of the selection task.

4. A Principled Normative Framework

In this section we provide a general normative framework for the task. The key idea is

simple and the relevant technicalmachinery is well understood in statistics and decision

theory (see, for example, Savage [1971]; Dawid [1998]; Gneiting and Raftery [2007]).

According to our proposal, epistemic utility is analysed in terms of accuracy—roughly:

closeness of probabilistic credences to actual truth-value assignments. In turn, our nor-

mative basis for an analysis of the selection task will be a measure of inaccuracy (to

be minimized), to wit, a scoring rule.4 Let’s see in more detail how this works.

Given a probability distribution P defined over C1 � C2 � C3 � C4 � D and a

specific scoring rule as a measure of epistemic inaccuracy, each element in the set of

the response options R can be assessed by the expected reduction of inaccuracy that

it yields concerning D or F. In our approach, such expected reduction in inaccuracy

will determine how much a given option is epistemically useful for an agent whose

aim is to find out the truth about D or F.

For our current purposes, a scoring rule is a function s∶fH � Pg→R, where H

is a finite partition of hypotheses,5 H 5 fh1, ::: , hng, and P the set of possible proba-

bility distributions over H, representing possible epistemic states of an agent. Then,

s(hi, P) (with hi ∈ H and P ∈ P) will be a measure of the (actual) inaccuracy of P

with respect to H assuming that hi is true. As a rule, of course, an epistemic agent will

not initially have access to the truth in H. However, the expected inaccuracy of a

given probability distribution Q over H can be assessed relative to a distribution P

over H that provides the expectation weights, as follows:

S P,Qð Þ 5 o
hi∈H

P hið Þ � s hi,Qð Þ:

4 Following Joyce’s ([1998], [2009]) seminal work, an extensive literature has developed in formal epis-
temology where scoring rules are investigated (for example, Predd et al. [2009]; D’Agostino and
Sinigaglia [2010]; Leitgeb and Pettigrew [2010]; Pettigrew [2013]; Fallis and Lewis [2016]; Schoenfield
[2017]; Dunn [2019]). Our discussion is of course closely connected to this strand of research by the ref-
erence to the key notion of accuracy. Notice, however, that while we do take probabilism (and con-
ditionalization) as normatively compelling (much as Oaksford and Chater, Nickerson, and Fitelson and
Hawthorne do), our argument is not committed to the prospects of the specific project of motivating prob-
abilism itself (and conditionalization) through the so-called accuracy-based approach. As a consequence,
criticism of the latter, however effective, does not generally apply to the former (see, for instance, Greaves
[2013]; Carr [2017]; Konek and Levinstein [2019]; Oddie [2019]).

5 This means that one assumes h1 ∨ . . . ∨ hn and also ∼(hj ∨ hk ) for each j ≠ k.
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A scoring rule s is said to be proper if S(P, P) ≤ S(P,Q) for all P, Q. For a strictly

proper score, moreover, it holds that if S(P, P) 5 S(P,Q), then P 5 Q. That is, a

score s will be strictly proper if and only if it is proper and any distribution Q other

than P has an expected score given P that is strictly higher (indicating more in-

accuracy) than P itself. There is wide consensus that rational agents measure epis-

temic inaccuracy through strictly proper scoring rules (for a recent discussion, see

Campbell-Moore and Levinstein [2021]).

How does all this relate to the assessment of an information search option such

as, say, C1 � C3 in the Wason selection task? To address this point in general, we

have to consider a partition of hypotheses H 5 fh1, ::: , hng, an evidence parti-

tion E 5 fe1, ::: , emg, their combination H � E 5 fh1 ∧ e1, h1 ∧ e2, ::: , hn ∧ em21,

hn ∧ emg, and a probability distribution P on H � E such that: P(hi) > 0 for any i;

the conditional probability of hi given ej, Pej (hi), is defined for each i and j; and P

represents the epistemic state of an agent. Then, given distribution P, a piece of evi-

dence e can itself be assigned (indirectly, as it were) a certain amount of epistemic

utility to the extent that it decreases the agent’s expected inaccuracy with respect to

the target hypothesis partition H. Such epistemic utility, denoted u(H, e), will thus

correspond to the extent to which the expected inaccuracy given e is lower than

the expected inaccuracy of the initial probability distribution, P, on the basis of the

updated distribution, Pe, where the new information e is taken into account (for a

neat recent discussion of this idea, see Roche and Shogenji [2018]), namely,

u H , eð Þ 5 S Pe, Pð Þ 2 S Pe, Peð Þ:
This allows us to define, eventually, the epistemic utility of a test E with respect to H,

which is simply the expected utility of its possible outcomes:

U H , Eð Þ 5 o
ej∈E

P ejð Þ � u H , ejð Þ:

It is important to emphasize that a measure U(H, E) here is not simply motivated as a

matter of convenience, popularity, or intuitive appeal. It arises in a principledway from

exactly three antecedent assumptions: (i) that the key epistemic utility is accuracy;

(ii) that inaccuracy is measured by a (proper) scoring rule; and (iii) that an improve-

ment in accuracy (decrease in inaccuracy) after updating on evidence e is appropri-

ately assessed on the basis of the posterior (and more informed) distribution, Pe.

This fundamental approach still leaves room for the choice of the scoring rule(s)

to be employed as a basic building block in our setting (see, for example, Douven

[2020] for a recent discussion), but major specifications can be recovered as special

cases of the comprehensive parametric family of the Tsallis scores6:

6 Tsallis’s name is mostly associated with a parametric family of entropies (see Tsallis [2011]; Crupi et al.
[2018]). What we here call Tsallis scores can be derived working back towards st so that Tsallis entropies
amount to St(P, P). Savage ([1971]) and Dawid ([1998]) spell out the details of this connection.
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st hi, Pð Þ 5 tlnt
1

pi

� �
2 1 2 o

hj∈H
ptj

 !
,

where t ≥ 0. The function lnt is a generalized version of the natural logarithm found

in Tsallis’s ([1988]) work: lnt(x) 5 (x12t 2 1)=(1 2 t). The ordinary logarithm is re-

covered in the limit for t→ 1, so that one can safely equate lnt(x) 5 ln(x) for t 5 1,

and make the parametric family st continuous in t (see the appendix).

Not only are Tsallis scores proper (in fact strictly proper as long as t > 0), most

importantly for our purposes, they also provide exactly the unified normative frame-

work that we look for. As we will see in the next sections, with t 5 0 we obtain a

well-behaved variant of Wason’s original quasi-Popperian approach to the selection

task (sec. 5); with t 5 1 we recover Oaksford and Chater’s formal machinery, now

equipped with a thorough motivation (sec. 6); and with t 5 2 we achieve a similar

result with respect to Nickerson and Fitelson and Hawthorne (sec. 7).

In principle, one could provide a motivation for a particular choice of t rather than

others. For example, as concerns the search for evidence, values of t close to zero rep-

resent the attitude of an agent who is especially eager to prune down the list of the

elements in H, whereas for very high values of t the agent is narrowly focused on the

prospects of getting to near-certainty about the true item in H, and largely insensitive

to anything else (for a related discussion, see Crupi et al. [2018]). But we are not com-

mitted to such choice here: what matters for the present purposes is that prominent

options yield the same result, as we will see later on.

This approach has other advantages too. Intuitive desiderata may be valuable re-

sources in support of specific normative choices, and indeed bothWason andOaksford

and Chater have appealed to intuitive considerations in support of their conclusions

(see secs 5–6). But regardless of whether one thinks that intuitive appeal is enough

to justify particular normative choices, our approach also has a more thorough moti-

vation. Unlike previous normative renditions of the Wason task, our proposal explic-

itly embeds the idea that rational inquiry has a specific epistemic goal: reducing inac-

curacy. This implies, for instance, that authors who have challenged bits of Bayesian

epistemology as ‘means with no end’ (Brössel and Huber [2014]) should find our line

of thought particularly appealing here (see also Schurz [2011], [2015]).

5. Wason Vindicated

We are back to the first episode of our story: Wason’s original account. Wason un-

equivocally interpreted ‘if a card has a vowel on one side, then it has an even number

on the other side’ as a material conditional, thus ruling out the possibility of a card

with a vowel and an odd number. Setting ε 5 0 will be enough to model such assump-

tion in our framework.
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Wason’s analysis of the task is best seen as addressing response frequencies as per-

formance measure for participants’ behaviour (see table 1). Response frequencies are

simply the proportions of participants who selected a given element in R, including all

combinations of C1–C4. Observed behaviour shows that a majority of participants

(60%–80%) choose either C1 or C1 � C3.
7 According to Wason, such participants

are actively choosing a dominated option, for a strictly better one is available, namely,

C1 � C4. In our notation, Wason’s diagnosis of irrationality is committed to the

implication that U (T ,C1 � C4) > U (T , C1), U (T ,C1 � C3) (where T is a rational

agent’s epistemic target in the task), and surely this is fully in line with Wason’s

([1966], [1968]) remarks. But how is this conclusion supported?

Wason seemed to endorse the principle thatU (T , C4) > U (T , C3) on the basis of an

informal ‘quasi-Popperian’ line of reasoning.8 The general idea would be something

like the following: given two options X, Y ∈ R, if any member xi of X can falsify an

element in T (for example, it’s logically incompatible with h, so that P(hjxi) 5 0),

whereas no element in Y can falsify any element in T, then U (T , X ) > U (T , Y ). As

plausible as it may sound, this claim still remains starkly insufficient for two reasons.

First, it does not offer any insight as to why the ranking at issue should hold in general

for a rational agent. Second, and no less important, the quasi-Popperian principle above

is too weak: given the material interpretation of the conditional (thus ε 5 0), it justi-

fies the ranking U (T ,C4) > U (T , C3), but it is completely silent for just those com-

parisons that seem crucial to sustain Wason’s diagnosis of mistaken reasoning, namely,

U (T ,C1 � C4) versus U(T, C1) and U (T ,C1 � C4) versus U (T , C1 � C3).

Our approach outlined above provides a simple and satisfactory solution, filling

both gaps in the traditional Wasonian approach to the task. The move required is to

pick up s0 from the Tsallis score formalism (see the appendix):

s0 ti, Pð Þ 5 o
tj∈T

P tjð Þ0 2 1:

Given the convenient convention that 00 5 0 (which is standard, in particular, in

information theory), s0 will simply correspond to the number of false hypotheses

in T that P does not rule out. Here, s0 may well seem a poor measure of inaccuracy,

as it actually ignores all the quantitative information conveyed by P, yet the measure

u0(T, e) thus generated is not without interest: it yields the number of elements in T

that become falsified by updating on the evidence e. In turn, we have that the cor-

responding expected reduction of inaccuracy U0(T, E) computes the expected num-

ber of hypotheses in T that will be falsified by performing evidence search E—a

motivated form of ‘quasi-Popperianism’ (see Baron et al. [1988], p. 106, for an ear-

lier occurrence). Given only our basic assumptions (see sec. 3), one can then prove that

7 There results remained robust across countless further replications; see, for example, (Evans et al. [1993];
Stenning and van Lambalgen [2008], p. 46; Ragni et al. [2018]).

8 For further discussions of this point, see, for example, (Humberstone [1994], p. 396; Mercier and Sperber
[2017], p. 212).
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U0(T , C1 � C4) > U0(T , C1) 5 U0(T , C1 � C3) for both T 5 F (Wason’s choice)

and T 5 D (the typical Bayesian choice) (see the appendix).

What’s the upshot? For t 5 0 our framework provides the basis for the justifi-

cation of Wason’s orderings that Wason himself lacked. This fills the relevant gaps

in this first part of the story, clarifying the normative ground required to support

Wason’s original argument for the diagnosis of irrational behaviour.

6. Oaksford and Chater Revised

We now turn to the second episode in our story, Oaksford and Chater’s analysis that

allegedly subverts the implications of Wason’s. As compared to Wason, Oaksford

and Chater take a different target for the assessment of reasoning performance in

the task: the percentage of participants selecting each single card. These values can

be interpreted as selection propensities (see table 1): how much one is willing to turn

each single card. This plausibly indicates howmuch, on average, a participant consid-

ers each elementary search option epistemically useful. Notably, this choice amounts to

a different representation of the possible experimental outcomes as one of the 24 pos-

sible (strict) rankings of the four elementary evidence search options C1–C4. Actual

figures for C1, C2, C3, C4 are 89%, 16%, 62%, and 25%, respectively, implying an ag-

gregated judgement that U (T ,C1) > U (T ,C3) > U (T , C4) > U (T ,C2).
9

We already know that Oaksford and Chater’s model of the task can be obtained by

our table 2, given some basic background assumptions—random independent sam-

pling, and flat prior on D (sec. 3)—setting a 5 a*, b 5 b* 5 1 2 ε*, and allowing

for, for example, ε 5 0:1. But what about the normative benchmark? Oaksford and

Chater’s recurrent approach has been to characterize epistemic utility as complementary

to uncertainty, and to rely on Shannon entropy as a measure of uncertainty (Shannon

[1948]). As a consequence, the epistemic utility of, say, turning cardC1 is given as the

expected reduction of the initial uncertainty about T in view of the possible outcomes

of the evidence search as determined by a probability distribution P (representing the

agent’s credal state). As a partial justification for the adoption of this approach, Oaks-

ford and Chater ([2003], p. 291) have pointed out that Shannon entropy ‘captures our

intuitions about a measure of uncertainty’. Evans and Over ([1996]), however, have

labelled the choice of this formalism a clear mistake. The source of Evans and Over’s

([1996], p. 362) dissatisfaction is that a good measure for the epistemic utility of evi-

dence search ‘must be positive whenever data are diagnostic, that is, lead one to re-

vise one’s belief’, a property that entropy reduction demonstrably lacks. Evans and

Over ([1996], p. 358) have thus suggested an alternative measure—absolute log like-

lihood ratio—against which, however, a powerful criticism was mounted by Nelson

([2005]).

9 See (Oaksford and Chater [1994]) for a summary of the influential meta-analysis from which relevant
values have been derived.
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Our accuracy-based framework neatly solves this quandary. As it happens, the

Tsallis score for t 5 1 is s1(hi, P) 5 ln(1=P(hi)), the popular logarithmic score (see

Good [1952]; Gneiting and Raftery [2007]). If inaccuracy is measured by the loga-

rithmic score, then the expected reduction in inaccuracy U1(H, E) is demonstrably

equivalent to the expected value of the Kullback–Leibler divergence, which in turn

is always numerically identical to Oaksford and Chater’s expected reduction of un-

certainty as quantified by Shannon entropy (see Kullback and Leibler [1951]; Cover

and Thomas [1991]).10 Given that the underlying actual values of the Kullback–Leibler

divergence are always non-negative, this can be taken to address Evans and Over’s

([1996]) challenge, as noted by Oaksford and Chater ([1996], pp. 381–82) themselves.

Our accuracy-based framework also goes beyond both sides of this controversy as it

explains why it makes sense for a measure of the actual epistemic utility of a piece of

evidence to be non-negative. Following a key insight recently emphasized by Roche

and Shogenji ([2018]), the reason is this: the assessment of how the current credal state

is inaccurate in expectation as compared to the earlier one should bemade on the com-

mon ground of the current credal state itself, represented by Pe, for it is by definition

better informed (after all, unlike the prior P, the posterior Pe embeds the truthful as-

sumption that e holds). But then the non-negativity of u(H, e)5 S(Pe, P)2 S(Pe, Pe)

follows straight away, provided that the underlying score s is proper, which is taken

to be an independently compelling constraint (of course satisfied, in particular, by

the logarithmic score s1). So our account recovers all implications of Oaksford and

Chater’s favourite machinery, while at the same time displaying principled norma-

tive foundations that are crucially lacking in their discussion.

Oaksford and Chater’s analysis is still often portraited as a vindication of hu-

man reasoning in the Wason task through a ‘paradigm shift’ towards a probabi-

listic (rather than ‘logical’) interpretation of rationality. This idea is quite misleading,

however.Oaksford and Chater’s analysis accommodates the observed response pattern

on the basis of so-called rarity assumption, namely, P½vowel(ci)� < P½even(ci)� ≪
P½∼even(ci)� (also see Fitelson and Hawthorne [2010], p. 233). In Oaksford and

Chater’s favourite parameter setting, in particular, one has a 5 0:22 and b 5 0:27,

so that U1(D,C1) 5 0:22 >U1(D, C3) 5 0:14 > U1(D, C4) 5 0:05 >U1(D, C2) 5

0:03. (This also works for plain response frequencies, at least to the extent that

U1(D,C1 � C3) 5 0:31 > 0:25 5 U0(D,C1 � C4). See the appendix for specifica-

tion of the full joint probability distribution on C1 � C2 � C3 � C4 � D.) And yet,

however valid rarity may be as a default assumption in many settings (including the

ravens paradox), it has no plausible normative justification for a probabilistic rep-

resentation of the Wason abstract selection task as it is. In fact, we submit that in the

10 The choice of the logarithm base is a largely immaterial matter of convention. For s1(h1, P), one can
switch to the popular choice of base two by a multiplicative constant. Such simple transformation car-
ries over to expected values (thus to expected inaccuracy as measured by S1(P, Q), to differences of ex-
pected values (thus to expected inaccuracy reduction u1(H, e); Kullback–Leibler divergence in this
case), and to expected values of such differences (thus to U1(H, E)). Also see the appendix.
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Wason task a plausible argument can be made against rarity, especially with regards

to b, that is, P[even(ci)].
11

On reflection, why should one ever assume finding an even number on a card in

theWason task as significantly less probable than finding a non-even (odd) number?

No clear suggestion in this direction arises from the hypothetical sampling proce-

dures of the four cards available, and none has been put forward to the best of our

knowledge. Quite on the contrary, for a Bayesian agent, the (second-order) levels

of confidence in support of P½even(ci)� 5 x versus P½even(ci)� 5 1 2 x must be in-

distinguishable for any x (with 0 < x < 1) on the basis of symmetry considerations

that seem very compelling in the context, and an estimate of b 5 0:5 is of course

the most natural consequence of this premise.12

We have run a simple exhaustive grid search (at interval 0.01) of the parameter

space of Oaksford and Chater’s model under the plausible assumption that b 5 0:5,

and found that all settings tested converge onWason’s original diagnosis in two cru-

cial respects: first, U1(D,C4) > U1(D, C3), against measured single-card selection

propensities (see fig. 2); and second, U1(D, C1 � C4) > U1(D,C1 � C3), against

plain observed response frequencies.

The crucial role of the rarity assumption in Oaksford and Chater’s account is not

a new topic, and its normative weakness was also noted before (see, for example,

Laming [1996]; Sloman and Fernbach [2008]). Still, a key implication seems to have

been underappreciated: as fascinating as it is, Oaksford and Chater’s analysis of

the selection task does not imply a revision of Wason’s original normative assess-

ment in a compelling way. In fact, the apparent rationalization of the participants’

behaviour does not arise from the application of Bayesian principles as ‘the appro-

priate normative theory’ (Oaksford and Chater [2007], p. 31), but from normatively

questionable auxiliary assumptions.

The upshot: for t 5 1 our generalized framework provides a coherent normative

justification converging with the formalism chosen by Oaksford and Chater ([1994],

[2003]). This fills a theoretical gap in their story. At the same time, it shows that despite

claims to the contrary, participants in the Wason selection task do not act as Bayesian

11 To what extent rarity is independently supported as a descriptive, psychological hypothesis about par-
ticipants’ attitudes is yet another potentially relevant issue that we leave aside here, but see, for example,
(Oberauer et al. [1999]).

12 Oaksford and Chater’s ([1994], pp. 627–28) discussion does not dispel this criticism, in our view. In
fact, they indirectly argue for the claim that rarity is typically factually adequate ‘in our environment’,
by which they clearly mean in ordinary language and reasoning outside the lab, thus not in the abstract
Wason task itself. This reveals that their notion of ‘adaptive rationality’, even if correct, is consistent
with systematic local departures from sound reasoning, which is the only relevant point for our current
purposes. The ‘extrapolation’ of rarity ‘from prior experience’ to the ‘novel’Wason task (were it indeed
the case) is no more and no less ‘reasonable’, we submit, than the analogue ‘extrapolation’ by which our
perceptual system becomes liable to illusions such as Müller–Lyer. Illusion remains illusion, and mis-
take remains mistake. Indeed, in the abstract Wason task, such tendency to extrapolate (again, if real)
unduly overrides very plausible motivations for a Bayesian agent to rely on P½even(ci)� 5 0:5. And
such specific and guarded motivations also elude Oaksford and Chater’s ([1994], p. 627) quick dismissal
of the principle of indifference as an alternative to their own favourite assumptions.
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rational agents plausibly would. Without key but doubtful assumptions about rarity, a

sound reconstruction of Oaksford and Chater’s favourite model neatly follows Wason’s

conclusions.

7. Nickerson and Fitelson and Hawthorne Amended

Both Nickerson ([1996]) and Fitelson and Hawthorne ([2010]) pursue the idea of an

explicit connection between the Wason task and Bayesian confirmation theory—a

project that we support. Still, we find their proposals defective in some important re-

spects. In this section we’ll explain why, but our constructive criticism and friendly

amendments require careful preparation first.

Drawing on (Nickerson [1996]) and contemporary Bayesian confirmation theory (see,

for example, Crupi [2015]; Crupi and Tentori [2016]), Fitelson andHawthorne ([2010])

define the confirmational power of evidence e for hypothesis h as the absolute

value of the difference between posterior and prior probability: D(h, e) 5 jP(hje)2
P(h)j. So far so good: the absolute value here allows one to appropriately bracket

whether e’s contribution increases or decreases the credibility of h, the idea being that e

is equally useful either way. But here is how Fitelson and Hawthorne—again follow-

ing Nickerson—extend this idea to a test or evidence search option E 5 fe1, ::: , emg:

P h, Eð Þ 5 o
ej∈E

P hjejð Þ 2 P hð Þj jP ejð Þ:

Figure 2. Expected utility of single-card selections in Wason’s task in Oaksford and
Chater’s ([1994], [2003]) analysis. Parameter b (the probability of an even number on
the card) is set at 0.5, whereas a (the probability of a vowel on the card) varies on the
x-axis while still satisfying rarity (< 0.5).
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This quantity, however, cannot represent the epistemic utility of E for an agent who

aims at finding out the truth about a target hypothesis space to which h belongs.

To illustrate, suppose we have: H 5 fh1, h2, h3, h4g and E 5 fe, ∼eg; a prior as-

signment on H of 40%, 30%, 20%, and 10%, respectively; 55%, 20%, 15%, and 10%

as a posterior distribution given e; and 25%, 40%, 25%, and 10% as a posterior distri-

bution given ∼e (all this implies that P(e) 5 50%). We then have P(h1, E) 5 0:15,

P(h2, E) 5 0:10, P(h3, E) 5 0:05, and P(h4, E) 5 0. What is then the overall epi-

stemic utility of E to find out about H? We should have one number, but we have

four—something is not quite working right.

What one could (and should) have done instead with confirmational power as ab-

solute probability difference is to posit:

uD H , eð Þ 5 1

Hj j ohi∈H
P hijeð Þ 2 P hið Þj j

(where FHF denotes the cardinality of H) and then, as usual, UD(H , E) 5 oej∈EP(ej)�
u(H , ej). Now, this measure does yield a definite assessment of test E for target hy-

pothesis set H in our illustrative example above (that is, 0.075). And predictably this

measure also occurs in important earlier discussions in the literature (especially Nel-

son [2005], under the label of ‘impact’).

It is true thatP(h, E) 5 UD(H , E) for any E as long asH is a binary hypothesis set,

that is, H 5 fh, ∼hg, which happens to be the case in the Wason task as usually un-

derstood. But this should not obscure the fact that P(h, E) is just not the right kind
ofmodel, as it relates a single hypothesis and a possible experiment. Our favourite sug-

gestion to make sense of P(h, E) is as a measure of the testability of the specific hy-

pothesis h through experiment E. Quite plausibly, the more the hypotheses in H that

are testable through E, and the more testable they are, the higher the epistemic value

of E with respect to H overall. Yet the two notions are, and should be kept, concep-

tually and formally distinct. Conflating the testability of one single hypothesis h in

H by E and the epistemic utility of E for H is a mistake.

This is our first issue with Nickerson and Fitelson and Hawthorne. If it were the

only issue, it could be solved by replacing P(h, E) with UD(H, E). That’s surely an

improvement, but still limited, we believe. As far as we can see, the sole motivation to

be found in favour ofUD(H, E) is the plausible idea that the epistemic utility of test E

forH should arise as a weighted average of the confirmational power of the elements

of E relative to the elements of H. By construction, this approach will imply that

UD(H, e) is strictly positive as long as the posterior probability departs from the

prior—a property that at least some authors (such as Evans andOver [1996], see above)

find very attractive. We tend to concur, and yet there are still some potential problems.

First, these remarks do not go much deeper than Oaksford and Chater’s alternative idea

that the epistemic utility of a test should amount to a reduction of uncertainty (which, as

we know, can well be negative). Second, UD (H, E) lacks other important formal

properties, like the following equivalence:
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Additivity:  U (H , E � F) 5 U H , Eð Þ 1 U H , FjEð Þ:

The above statement means that the epistemic utility of a combined test E � F

amounts to the sum of the plain utility of E and the utility of F that is expected con-

sidering all possible outcomes of E (where U (H , FjE) 5 oej∈EU (H , Fjej) � P(ej) and
U (H , Fjej) denotes the expected utility of F for H computed when all probabilities

are conditionalized on ej). Roughly, this additivity principle represents the idea that

for an agent assessing in advance the utility of E and F combined, it does not matter in

which order the outcomes of those tests are expected to be revealed. Additivity is

important and highly desirable as concerns the analysis of the rational assessment

of tests. Yet it is demonstrably violated byUD(H,E) (see Nelson [2008] for discussion).

Our generalized framework addresses all difficulties above by choosing t 5 2.

The corresponding Tsallis score s2 amounts to the Brier score (or ‘squared Euclidean

distance’; see Selten [1998], and the appendix for a proof of the connection). Expected

reduction in inaccuracy will then be measured as follows:

U2 H , Eð Þ 5 o
ej∈E

o
hi∈H

P hijejð Þ 2 P hið Þ½ �2P ejð Þ:

This measure, we urge, retains the spirit and the attractive features of Nickerson’s

and Fitelson and Hawthorne’s theoretical approaches while overcoming all limitations

outlined above. Here, the actual epistemic utility u2(H, e) is indeed the sum of the

confirmational power of e for every hypothesis in H as quantified by a confirmation

measure that is ordinally equivalent to the traditional probability difference and also

recently discussed by van Enk ([2014]). The additivity property above is also hap-

pily satisfied byU2(H, E) (see Crupi and Tentori [2014]). Finally, and importantly, this

arrangement does not have to be accepted on purely intuitive grounds (as nice as

they can be), but arises once again as a consequence of the general accuracy-based ap-

proach given the specific choice of the Brier score.

We are left, of course, with one final point to be discussed: the implications for ob-

served behaviour in theWason task. As is typical in the tradition of theWason / ravens

parallelism, both Nickerson ([1996]) and Fitelson and Hawthorne ([2010]) presup-

pose that T 5 D and ε 5 0, so that d 5 8 x½vowel(x) ⊃ even(x)� (quantifying over

all cards in the allegedly large sampled deck) and the foil hypothesis, ∼d, is the plain
logical negation. Nickerson’s ([1996], p. 16) specific numerical model also embeds

the assumption that ε* 5 0:5. Given the material implication interpretation of d, this

assumption can be supported again by a plausible symmetry argument. In fact, on the

supposition that d is false, the probability for a card with a vowel to also have an even

number will have to be strictly lower than one, but for a Bayesian agent the (second-

order) levels of confidence in support of ε* 5 P½∼even(ci)jvowel(ci) ∧ ∼h� 5 x

versus P½∼even(ci)jvowel(ci) ∧ ∼h� 5 12 x must be indistinguishable for any x

(with 0 < x < 1). If this consideration is applied, then the agreement between Nickerson

and Oaksford and Chater in defence of the rationality of participants’ behaviour rests
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on the same shaky ground. Here again, a grid search (at interval 0.01) of the parameter

range for a shows that if rarity is rejected at least for P[even(ci)] (so that b 5 0:5),

then Wason’s original diagnosis remains valid, namely, U2(D, C4) > U2(D,C3), against

measured single-card selection propensities; and U2(D,C1 � C4) > U2(D,C1 � C3),

against plain observed response frequencies.13

Fitelson andHawthorne have proven cautious about the rationalization of behaviour

in the Wason selection task, and on this we definitely concur (although for quite dif-

ferent motivations, compare Fitelson and Hawthorne [2010], pp. 234–35). Still, one

specific point in their extensive discussion deserves comment, as it contributes to

the generality of our conclusions. In our understanding, Fitelson and Hawthorne’s

([2010], pp. 221–23) parallelism between the ravens paradox and the Wason task

suggests that the traditional setting a 5 a* and b 5 b* would better be relaxed to

allow for a ≤ a*, and b ≥ b*. Here is the idea, informally. If the universally quan-

tified conditional d is false, then one may well expect a comparably higher probabil-

ity for a vowel card (so that a < a*) or for an odd number card (so that b > b*), for

the instances in the population that would make d false must be of that kind.

What is interesting for our purposes is that all the plausible conditions that Nicker-

son ([1996]) and Fitelson and Hawthorne ([2010]) favour can be jointly satisfied. And

again, to the extent that rarity is rejected at least for P[even(ci)], the rationalization

of observed behaviour typically fails. For an illustrative numerical example, consider

the parameter setting a 5 0:15 < a* 5 0:25, b 5 0:55 > b* 5 0:45, and ε* 5

0:50, whereby one has U2(D, C4) 5 0:064 > 0:00002 5 U2(D, C3), against mea-

sured single-card selection propensities, and U2(D, C1 � C4) 5 0:221 > 0:167 5

U2(D,C1 � C3), against plain observed response frequencies. (See the appendix for

specification of the full joint probability distribution on C1 � C2 � C3 � C4 � D.)

The upshot: for t 5 2 our generalized framework recovers an amended version of

Nickerson’s ([1996]) and Fitelson and Hawthorne’s ([2010]) analyses. At the same

time, it clearly shows that without theoretical analogues of the rarity assumption,

Bayesian models of this kind neatly follow Wason as well.

8. Conclusion

Wason’s original intuition was correct. Meanwhile, claims have beenmade that con-

troversies on human rationality in experimental reasoning tasks are pointless as they

are bound to drown in the intractable problem of the ‘arbitration’ between compet-

ing norms (for example, Elqayam and Evans [2011]). At least in the paramount case

of the selection task, our discussion suggests a very different picture. Three major

approaches as different as a ‘logical’ (Wason’s), an information-theoretic (Oaksford

13 It should be pointed that while Nickerson’s ([1996]) ‘illustrative’ numerical example does embed rarity
(with a 5 0:05 and b 5 0:10, in our notation) as well as Oaksford and Chater’s independence settings
(with a 5 a* and b 5 b*), his discussion does not provide arguments in support of such assumptions
as normatively sound for the abstract Wason task.
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and Chater’s), and a confirmation-theoretic (Nickerson’s and Fitelson and Haw-

thorne’s) analysis have been all recovered as specifications of a unified view of ratio-

nal inquiry as aiming at inaccuracy reduction. And as it turns out, the verdict of defec-

tive reasoning has remained unscathed across these variations.

The Wason selection task has been called ‘a mysterious beast’ (Manktelow [2012],

p. 113), bewitching three generations of reasoning scholars—and not without rea-

sons. Despite extensive investigation, a complete psychological account of observed

behaviour is still an open scientific challenge (see, for example, Ragni et al. [2018]).

Yet the normative interpretation of the task is no mystery, we believe: the routes of

the Bayesians lead back to where it all started, with Wason.

Appendix

A.1. Special Cases of the Tsallis Scores

The case t 5 0 is straightforward. We have

st hi, Pð Þ 5 tlnt
1

pi

� �
2 1 2 o

hj∈H
ptj

 !
5 o

hj∈H
p0j 2 1:

For t 5 1, we consider the Tsallis logarithm, lnt(x) 5 1=(1 2 t)½x(12t) 2 1�. To
show that the ordinary natural logarithm is recovered from lnt(x) (x > 0) in the limit

for t→ 1, posit x 5 1 2 y and first consider x ≤ 1, so that j2yj < 1. Then we have

lim
t→ 1

lnt xð Þf g 5 lim
t→ 1

lnt 1 2 yð Þf g 5 lim
t→ 1

1

1 2 t
1 2 yð Þ 12tð Þ 2 1

h i� �
,

and, by the binomial expansion of (1 2 y)(12t):

lim
t→ 1

1

1 2 t
1 2 yð Þ 12tð Þ 2 1

h i� �

5 lim
t→ 1

1

1 2 t
21 1 1 1 1 2 tð Þ 2yð Þ 1 1 2 tð Þ 1 2 t 2 1ð Þ 2yð Þ2

2 !
1

1 2 tð Þ 1 2 t 2 1ð Þ 1 2 t 2 2ð Þ 2yð Þ3
3 !

1 :::

� �� �� �

5 lim
t→ 1

2yð Þ 1 2tð Þ 2yð Þ2
2 !

1
2tð Þ 2t 2 1ð Þ 2yð Þ3

3 !
1 :::

� �

5 lim
t→ 1

2yð Þ 2 t 2yð Þ2
2 !

1
tð Þ t 1 1ð Þ 2yð Þ3

3 !
2 :::
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5 2yð Þ 2 2yð Þ2
2 !

1
2 ! 2yð Þ3

3 !
2 :::

5 2yð Þ 2 2yð Þ2
2

1
2yð Þ3
3

2 ::: ,

which is the series expansion of ln(1 2 y) 5 ln(x) (recall that j2yj < 1). For the

case x > 1, one can posit x 5 1=(1 2 y), so that again j2yj < 1 and compute

limt→ 1f(1=(12 y))(12t) 2 1=(12 t)g 5 limt→ 1f2(1=(t2 1))½(12 y)(t21) 2 1�g,
thus getting the same result from a similar derivation. This justifies positing ln1(x) 5

ln(x). As a consequence, s1(h1, P) indeed amounts to the logarithmic score:
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s1 hi, Pð Þ 5 ln1
1

pi

� �
2 1 2 o

hj∈H
pj

 !
5 ln

1

pi

� �
:

Finally, for the case t 5 2, we have:

st hi, Pð Þ 5 tlnt
1

pi

� �
2 1 2 o

hj∈H
ptj

 !
5 2ln2

1

pi

� �
2 1 2 o

hj∈H
p2j

 !

5 2 1 2 pið Þ 2 1 2 o
hj∈H

p2j

 !
5 1 2 2pi 1 o

hj∈H
p2j

5 1 2 2pi 1 p2i
� 	

1 o
hj∈H2 hif g

p2j 5 1 2 pið Þ2 1 o
hj∈H2 hif g

p2j

and the latter just is the Brier score.

A.2. Accuracy in the Wason Task with t 5 0

First we show that U0(D,C1 � C3) 5 U0(D,C1). For simplicity, we start denoting

even(c1) ∧ vowel(c3), even(c1) ∧ ∼vowel(c3), ∼even(c1) ∧ vowel(c3), ∼even(c1) ∧
∼vowel(c3) as x, y, w, and z, respectively.

U0 D,C1 � C3ð Þ
5 P xð Þu0 D, xð Þ 1 P yð Þu0 D, yð Þ 1 P wð Þu0 D, wð Þ 1 P zð Þu0 D, zð Þ
5 P xð Þ S0 Px, Pð Þ 2 S0 Px, Pxð Þ½ � 1 P yð Þ S0 Py, Pð Þ 2 S0 Py, Pyð Þ½ �
      1 P wð Þ S0 Pw, Pð Þ 2 S0 Pw, Pwð Þ½ � 1 P zð Þ S0 Pz, Pð Þ 2 S0 Pz, Pzð Þ½ �
5 P xð Þ Px dð Þs0 d, Pð Þ 1 Px ∼dð Þs0 ∼d, Pð Þ½ � 2 Px dð Þs0 d, Pxð Þ 1 Px ∼dð Þs0 ∼d, Pxð Þ½ �f g
      1 P yð Þ Py dð Þs0 d, Pð Þ 1 Py ∼dð Þs0 ∼d, Pð Þ½ �f
      2 Py dð Þs0 d, Pyð Þ 1 Py ∼dð Þs0 ∼d, Pyð Þ½ �g
      1 P wð Þ Pw dð Þs0 d, Pð Þ 1 Pw ∼dð Þs0 ∼d, Pð Þ½ �f
      2 Pw dð Þs0 d, Pwð Þ 1 Pw ∼dð Þs0 ∼d, Pwð Þ½ �g
      1 P zð Þ Pz dð Þs0 d, Pð Þ 1 Pz ∼dð Þs0 ∼d, Pð Þ½ �f
      2 Pz dð Þs0 d, Pzð Þ 1 Pz ∼dð Þs0 ∼d, Pzð Þ½ �g
5 P xð Þ 1 2 1f g 1 P yð Þ 1 2 1f g 1 P wð Þ 1 2 0f g 1 P zð Þ 1 2 0f g
5 P w ∨ zð Þ
5 P ∼even c1ð Þ½ �
5 P even c1ð Þ½ � 1 2 1f g 1 P ∼even c1ð Þ½ � 1 2 0f g
5 P even c1ð Þ½ � Peven c1ð Þ dð Þs0 d, Pð Þ 1 Peven c1ð Þ ∼dð Þs0 ∼d, Pð Þ
 ��
      2 Peven c1ð Þ dð Þs0 d, Peven c1ð Þ

� 	
1 Peven c1ð Þ ∼dð Þs0 ∼d, Peven c1ð Þ

� 	
 �g
      1 P ∼even c1ð Þ½ � P∼even c1ð Þ dð Þs0 d, Pð Þ 1 P∼even c1ð Þ ∼dð Þs0 ∼d, Pð Þ
 ��
      2 P∼even c1ð Þ dð Þs0 d, P∼even c1ð Þ

� 	
1 P∼even c1ð Þ ∼dð Þs0 ∼d, P∼even c1ð Þ

� 	
 �g
5 P even c1ð Þ½ � S0 Peven c1ð Þ, P

� 	
2 S0 Peven c1ð Þ, Peven c1ð Þ

� 	
 �
      1 P ∼even c1ð Þ½ � S0 P∼even c1ð Þ, P

� 	
2 S0 P∼even c1ð Þ, P∼even c1ð Þ

� 	
 �
5 P even c1ð Þ½ �u0 D, even c1ð Þð Þ 1 P ∼even c1ð Þ½ �u0 D, ∼even c1ð Þð Þ 5 U0 D, C1ð Þ
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Now we compute U0(D,C1 � C4), here denoting even(c1) ∧ vowel(c4), even(c1) ∧
∼vowel(c4), ∼even(c1) ∧ vowel(c4), ∼even(c1) ∧ ∼vowel(c4) as x, y, w, and z, re-

spectively. In this case, we have:

U0 D,C1 � C4ð Þ
5 P xð Þu0 D, xð Þ 1 P yð Þu0 D, yð Þ 1 P wð Þu0 D, wð Þ 1 P zð Þu0 D, zð Þ
5 P xð Þ Px dð Þs0 d, Pð Þ 1 Px ∼dð Þs0 ∼d, Pð Þ½ � 2 Px dð Þs0 d, Pxð Þ 1 Px ∼dð Þs0 ∼d, Pxð Þ½ �f g
1 P yð Þ Py dð Þs0 d, Pð Þ 1 Py ∼dð Þs0 ∼d, Pð Þ½ � 2 Py dð Þs0 d, Pyð Þ 1 Py ∼dð Þs0 ∼d, Pyð Þ½ �f g
1 P wð Þ Pw dð Þs0 d, Pð Þ 1 Pw ∼dð Þs0 ∼d, Pð Þ½ � 2 Pw dð Þs0 d, Pwð Þ 1 Pw ∼dð Þs0 ∼d, Pwð Þ½ �f g
1 P zð Þ Pz dð Þs0 d, Pð Þ 1 Pz ∼dð Þs0 ∼d, Pð Þ½ � 2 Pz dð Þs0 d, Pzð Þ 1 Pz ∼dð Þs0 ∼d, Pzð Þ½ �f g

5 P xð Þ 1 2 0f g 1 P yð Þ 1 2 1f g 1 P wð Þ 1 2 0f g 1 P zð Þ 1 2 0f g
5 P xð Þ 1 P w ∨ zð Þ 5 P even c1ð Þ ∧ vowel c4ð Þ½ � 1 P ∼even c1ð Þ½ �:

Then clearly, U0(D,C1 � C4) > U0(D, C1 � C3) 5 U0(D, C1), because

U0 D,C1 � C4ð Þ 2 U0 D,C1 � C3ð Þ
5 P even c1ð Þ ∧ vowel c4ð Þ½ �
5 P even c1ð Þ ∧ vowel c4ð Þjd½ �P dð Þ 1 P even c1ð Þ ∧ vowel c4ð Þj ∼d½ �P ∼dð Þ
5 P even c1ð Þ ∧ vowel c4ð Þj ∼d½ �P ∼dð Þ

5 P even c1ð Þj∼d½ �P vowel c4ð Þj∼d½ �P ∼dð Þ 5 1

2
a*b*,

which is strictly positive, as a*, b* > 0. The above derivation applies with essen-

tially no variation by replacing D with F.

A.3. Full Joint Probability Distributions for the Wason Task

Below is the full joint probability distribution over C1 � C2 � C3 � C4 � D aris-

ing from Oaksford and Chater’s analysis (see sec. 6). Figures are obtained from

table 2 given a flat prior over D, the independent sampling assumption for the

four cards, and the following parameter setting (including rarity): a 5 a* 5 0:22;

b 5 b* 5 1 2 ε* 5 0:27; ε 5 0:1. All probabilities are conditionalized on infor-

mation about the visible sides of the four cards in the abstract Wason task, namely,

on vowel(c1) ∧ ∼vowel(c2) ∧ even(c3) ∧ ∼even(c4).
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P½even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 918018967334036 • 10218

P½even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 176418 • 1028

P½even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 295435194942044 • 10216

P½even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 625482 • 1028

P½even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 333825079030559 • 10218

P½even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 625482 • 1028

P½even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 107430979978925 • 10216

P½even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 2217618 • 1028

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 902718651211802 • 10217

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 476982 • 1028

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 290511275026343 • 10215

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 1691118 • 1028

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 328261327713382 • 10217

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 1691118 • 1028

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 105640463645943 • 10215

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 5995782 • 1028

P½∼even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 10200210748156 • 10217

P½∼even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 476982 • 1028

P½∼even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 328261327713382 • 10217

P½∼even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 1691118 • 1028

P½∼even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 370916754478398 • 10219

P½∼even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 1691118 • 1028

P½∼even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 119367755532139 • 10217

P½∼even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 5995782 • 1028

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 100302072356867 • 10217

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 1289618 • 1028

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 322790305584826 • 10216

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 4572282 • 1028

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 364734808570425 • 10218

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 4572282 • 1028

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 117378292939937 • 10216

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 16210818 • 1028

Below is the illustrative full joint probability distribution over C1 � C2 � C3 �
C4 � D employed in section 7, dismissing rarity for P[even(ci)] but otherwise in

line with conditions favoured by Nickerson ([1996]) and Fitelson and Hawthorne
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([2010]). Figures are obtained from table 2 given a flat prior over D, the independent

sampling assumption for the four cards, and the following parameter setting: a 5

0:15; a* 5 0:25; b 5 0:55; b* 5 0:45; ε 5 0; and ε* 5 0:5. All probabilities are

conditionalized on information about the visible sides of the four cards in the abstract

Wason task, namely, on vowel(c1) ∧ ∼vowel(c2) ∧ even(c3) ∧ ∼even(c4).

P½even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 0

P½even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 683922558922559 • 10217

P½even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 641711229946524 • 10216

P½even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 23253367003367 • 10215

P½even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 0

P½even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 177819865319865 • 10216

P½even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 171122994652406 • 10215

P½even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 604587542087542 • 10216

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 0

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 894360269360269 • 10217

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 72192513368984 • 10215

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 304082491582492 • 10216

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 0

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 23253367003367 • 10215

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 192513368983957 • 10215

P½even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 790614478114478 • 10216

P½∼even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 0

P½∼even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 683922558922559 • 10217

P½∼even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 0

P½∼even c1ð Þ ∧ even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 23253367003367 • 10215

P½∼even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 0

P½∼even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 177819865319865 • 10216

P½∼even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 0

P½∼even c1ð Þ ∧ even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 604587542087542 • 10216

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 0

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 894360269360269 • 10217

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 0

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 304082491582492 • 10216

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ d� 5 0

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ vowel c4ð Þ ∧ ∼d� 5 23253367003367 • 10215

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ d� 5 0

P½∼even c1ð Þ ∧ ∼even c2ð Þ ∧ ∼vowel c3ð Þ ∧ ∼vowel c4ð Þ ∧ ∼d� 5 790614478114478 • 10216
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